- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0011000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Weininger, Maximilian (2)
-
Andriushchenko, Roman (1)
-
Bork, Alexander (1)
-
Budde, Carlos E (1)
-
D’Antoni, Loris (1)
-
Grover, Kush (1)
-
Hahn, Ernst Moritz (1)
-
Hartmanns, Arnd (1)
-
Helfrich, Martin (1)
-
Israelsen, Bryant (1)
-
Jansen, Nils (1)
-
Jeppson, Joshua (1)
-
Junges, Sebastian (1)
-
Kretinsky, Jan (1)
-
Köhl, Maximilian A (1)
-
Könighofer, Bettina (1)
-
Křetínský, Jan (1)
-
Meggendorfer, Tobias (1)
-
Parker, David (1)
-
Pranger, Stefan (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The analysis of formal models that include quantitative aspects such as timing or probabilistic choices is performed by quantitative verification tools. Broad and mature tool support is available for computing basic properties such as expected rewards on basic models such as Markov chains. Previous editions of QComp, the comparison of tools for the analysis of quantitative formal models, focused on this setting. Many application scenarios, however, require more advanced property types such as LTL and parameter synthesis queries as well as advanced models like stochastic games and partially observable MDPs. For these, tool support is in its infancy today. This paper presents the outcomes of QComp 2023: a survey of the state of the art in quantitative verification tool support for advanced property types and models. With tools ranging from first research prototypes to well-supported integrations into established toolsets, this report highlights today’s active areas and tomorrow’s challenges in tool-focused research for quantitative verification.more » « less
-
D’Antoni, Loris; Helfrich, Martin; Kretinsky, Jan; Ramneantu, Emanuel; Weininger, Maximilian (, Computer Aided Verification)null (Ed.)Computer science class enrollments have rapidly risen in the past decade. With current class sizes, standard approaches to grading and providing personalized feedback are no longer possible and new techniques become both feasible and necessary. In this paper, we present the third version of Automata Tutor, a tool for helping teachers and students in large courses on automata and formal languages. The second version of Automata Tutor supported automatic grading and feedback for finite-automata constructions and has already been used by thousands of users in dozens of countries. This new version of Automata Tutor supports automated grading and feedback generation for a greatly extended variety of new problems, including problems that ask students to create regular expressions, context-free grammars, pushdown automata and Turing machines corresponding to a given description, and problems about converting between equivalent models - e.g., from regular expressions to nondeterministic finite automata. Moreover, for several problems, this new version also enables teachers and students to automatically generate new problem instances. We also present the results of a survey run on a class of 950 students, which shows very positive results about the usability and usefulness of the tool.more » « less
An official website of the United States government
